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Flying animals exploit highly nonlinear dynamics to achieve efficient and robust flight control. It appears that the

distributed flow and force sensor arrays found in flying animals are instrumental in enabling this performance. Using

a wind-tunnel wing model instrumented with distributed arrays of strain and pressure sensors, we characterized the

relationship between the distributed sensor signals and aerodynamic and load-related variables. Estimation

approaches based on nonlinear artificial neural networks (ANNs) and linear partial least squares were tested with

different combinations of sensor signals. The ANN estimators were accurate and robust, giving good estimates for all

variables, even in the stall region when the distributed array pressure and strain signals became unsteady. The linear

estimator performed well for load estimates but was less accurate for aerodynamic variables such as angle of attack

and airspeed. Future applications based on distributed sensing could include enhanced flight control systems that

directly use measurements of aerodynamic states and loads, allowing for increase maneuverability and improved

control of unmanned aerial vehicles with high degrees of freedom such as highly flexible or morphing wings.

Nomenclature

b = wing model span, m
CP = pressure coefficient
c = wing model mean aerodynamic chord, m

D; D̂ = measured and estimated aerodynamic drag forces, N

eD̂ = aerodynamic drag force estimation error, %

eL̂ = aerodynamic lift force estimation error, %

eM̂ = aerodynamic pitching moment estimation error, %

eV̂ = wind speed estimation error, m/s

eα̂ = angle-of-attack estimation error, deg

L; L̂ = measured and estimated aerodynamic lift forces, N

M; M̂ = measured and estimated aerodynamicpitchingmoments,
N ⋅m

q = wing model pitch rate, deg/s
S = wing model reference surface, m2

T = normalized strain due to torsion, mV∕�N ⋅m�
V; V̂ = measured and estimated wind speed, m/s

VB = normalized vertical bending moment
α; α̂ = measured and estimated angle of attack, deg
ρ = air density, kg∕m3

I. Introduction

C ONVENTIONAL flight control systems for autonomous air-
craft traditionally use a small number of very precise sensors,

which give the control system information about the motion of the
aircraft’s center of mass. For instance, inertial measurement units are
used to measure linear acceleration and angular rates of rotation,
whereas a pitot tube is used to measure airspeed. This information is
then normally used alongside sensors such as the Global Positioning
System to provide the control system with measurements of the
aircraft rigid-body motion [1]. This combination of conventional
sensor suites and controllers works well when the assumptions of
rigid-body motion and linearized flight dynamics and aerodynamics

apply but may be limiting when these assumptions are no longer
valid: for example, with highly flexible airframes or at high angles of
attack. In some cases, the flight dynamics and aerodynamics models
may be too simple to capture highly nonlinear dynamics; whereas in
other cases, the type, number, and placement of sensors usedmay not
be adequate.
Biological fliers such as birds, bats, and insects all have highly

flexible wings and bodies, where numerous joints and aeroelastic
deformation mean that the shapes of their wings and the related
aerodynamic forces they produce are constantly changing [2]. In
addition, they fly in airflows where the magnitude of the gusts can
be the same order as their airspeed, meaning that they can experience
very large unpredictable changes in angle of attack [3]. Rather than
being limited by these departures from rigid-body motion and linear
aerodynamics, it appears that biological fliers take advantage of them.
For instance, wing flexibility helps reduce the flight costs of locusts
[4], flapping motion generates additional lift through leading-edge
vortex generation in bats [5], and birds appear to use both spatial [6]
and temporal variations [7] in the wind to reduce their flight costs.
One aspect all biological fliers appear to have in common, and in

contrast to aircraft, is that they havemany different sensors distributed
on their bodies and aerodynamic surfaces, as well as having localized
sensory organs such as eyes, ears, and inertial sensors. Insects have
many flow-sensitive hairs distributed about their bodies, as well as
strain-sensitive campaniform sensilla distributed throughout their
wings [8]. Birds have thousands of mechanoreceptors throughout
their wings [9], which are thought to encode airflow information [10],
while also having proprioceptive muscle spindles that give them
information about the positions of the different parts of their bodies
and the forces acting on these [11]. Similarly, bats have flow-sensitive
hairs all over theirwings [12], aswell as very similar proprioceptors to
birds. Overall, these types of distributed sensors, where the sensors
are located at many different points spatially, provide animals with a
rich suite of sensory input about the spatial distribution of airflow and
loading over their bodies and wings; and it would appear that these
distributed sensory systems play an important role in their robust and
efficient flight control. This offers bioinspiration for the development
of multimodal distributed sensor arrays for aircraft flight control.
The development of distributed airflow sensor systems is a growing

research area. Distributed flow sensors have been used in flush air
data systems in a number of high-performance aircraft, such as the
X-33 [13] and the space shuttle [14], where traditional air data booms
were impractical. However, these distributed airflow sensors are also
increasingly being developed for small unmanned aerial vehicles
(UAVs) [15] where there is a need for more agile flight control when
flying in cluttered turbulent environments. These systems have used a
number of different types of sensors such as diaphragm-based pressure
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sensors [16], hot film sensors [17], and artificial hair sensors [18].
Studies of these systems inwind-tunnel testing, aswell as flight testing
[19,20], have shown the potential of these systems for measuring a
range of aerodynamic parameters.
The use of distributed force or strainmeasurement for flight control

is a less well-investigated area than distributed flow sensing. Initial
work has shown the potential for this type of sensor information
to improve flight control, with the potential for faster responses [21]
and the use of a physics-based control approach [22]. Previous studies
have looked at the advantages of each system in isolation in separate
aircraft [23] but, as yet, the potential advantages of using both
distributed airflow and load information in a single aircraft have not
been well explored.
The contribution of this work is to investigate how distributed

pressure and strain information can be used together to estimate aero-
dynamic variables and loads, including in highly unsteady conditions
such as stall, with a view of using these different sensory modalities
together as real-time inputs for flight control for small-scale fixed-wing
UAVs. As part of this, we investigate whether a linear estimation
approach is suitable for extracting information fromadistributed sensor
array or whether a nonlinear estimation approach is required.
This paper is organized as follows:Sec. II presents the experimental

methods andplatforms used for this research and theirmain character-
istics. Section III presents results from wind-tunnel tests carried out
to characterize the strain and pressure signals. Section IV presents
aerodynamic variables and loads prediction results using strain and
pressure experimental data. Section V summarizes the information
presented in this paper, and it discusses areas of potential application
for distributed sensing. Lastly, Sec. VI presents some concluding
remarks.

II. Experimental Platform Description

A. Wing Model

A wind-tunnel wing model with distributed arrays of both strain
sensors and pressure sensors was constructed using the main wing of
a radio control aircraft model (Ripmaxmodel WOT4 Foam-EMk2+,
Enfield, England, United Kingdom). The wing airfoil section was a
custom shape and had not previously been aerodynamically charac-
terized. Thewing had a rectangular planform,with awingspan ofb �
1.205 m and a chord of c � 0.25 m. Only half of the wing was used
for the model; i.e., the wind-tunnel model wingspan was 0.602 m. A
total of 30 pressure sensors located in the fuselage were connected to
corresponding pressure ports in the wing. The ports were distributed
along thewing chord and installed in two different locations along the

span using three-dimensionally (3-D)-printed inserts. The chordwise

location of the pressure ports is shown in Fig. 1a, whereas the

spanwise location of the 3-D inserts is shown in Fig. 1b. The pressure

port locationswere labeledLE for the leading edge,T01 toT07 for top

surface ports one to seven, and B01 to B07 for bottom surface ports

one to seven. To differentiate ports between sections, a hyphenated

label is employed: for instance ports LE-A,T03-B, andB07-A should

be interpreted as leading-edge section A, top surface port-three

section B, and bottom surface port-seven section A, respectively.

This arrangement provided information on the chordwise pressure

distribution of thewing at two locations along the span.An array of 16

strain gauges was installed on the wing spar, an aluminum beam

located at the quarter-chord of the wing. The strain gauges were

divided into four subarrays, with each subarray able to measure the

vertical bending moment and torsional strain. Figure 1b shows the

spanwise location of each strain gauge subarray, with SG-A, SG-B,

SG-C, and SG-D denoting the strain gauge arrays in locations A toD,

respectively. Note that all experiments were carried out in a cantilever

configuration, i.e., fixed condition at the wing root and free at the

wing tip. Dual-grid strain gauge pairswere used tomeasure strain due

to bending moment. At each location, two opposing pairs were

installed in a full-bridge configuration on the beam surface: one on

top and another on the bottom. Triaxial strain gauge rosettes were

used to measure strain due to torsional moment. At each location,

two opposing rosettes were installed in a full-bridge configuration

on the beam surface: one on each side of the beam. The full-bridge

configuration provided temperature compensation and the highest

output sensitivity. Calibration experiments were carried to compute

the vertical bending moment from the corresponding strain measure-

ment. With the wing in a cantilever beam configuration, point loads

(PL � �1.96; 3.92; 5.89; 7.85; 9.81� N) were applied to the wing tip

at α � �−30;−20;−10; 0; 10; 20; 30� deg. The resulting dataset was
used to compute calibration factors for each strain gauge. The sensor

technical specifications are given in Table 1. Higher range pressure

sensors were used in parallel with lower range sensors for some ports

where therewas potential for the sensors to saturate, with their signals

fused in the data processing stage. The fused sensor signal was

computed using the following expression:

Ps �

8>><
>>:

Pa if P < 460.0 Pa

0.8Pa � 0.2Pb if 460.0 Pa ≤ P < 480.0 Pa

Pb if P ≥ 480.0 Pa

a) b)

Fig. 1 Wing model experimental platform sensor locations: a) chordwise pressure array distribution, and b) spanwise strain array distribution.

Table 1 Wing model experimental platform sensor technical specifications

Sensor features

Static pressure Static pressure Vertical bending Torsion

Model SDP36 MPXV7002 SGD-2/350-DY13 SGD-2/350-RY53
Manufacturer Sensirion Freescale Semiconductor Omega Engineering Omega Engineering
Measurement range �500 Pa �2 kPa �30;000 μm∕m �30;000 μm∕m
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where Ps is the fused pressure signal, Pa is the low measurement
range sensor signal, Pb is the high measurement range sensor signal,
and P represents the actual pressure. The wing model was fitted with
two servo motors to drive the motion of the wing control surfaces. A
pitot tube was installed on the wing to provide auxiliary airspeed
readings. Figure 2 shows a photograph of the wing model experi-
mental platform distributed sensing array layout and the model when
installed in the wind tunnel.

B. One-Degree-Of-Freedom Pitch Rig

The wing model was mounted on a one-degree-of-freedom
(1-DOF) pitch motion wind-tunnel rig, with the motion driven by a
servo motor (Schneider Electric model LXM32MD30M2, Rueil-
Malmaison, France). Figure 3a shows a schematic representation of
the 1-DOF pitch motion wind-tunnel rig layout. The aerodynamic
loads were measured using a load cell (ATI Industrial Automation
model Mini 45, Apex, North Carolina) mounted at the interface
between the wing support and the rig’s shaft. Note that as the load
cell rotated together with the wing, the measured loads were in the
body axes system and later transformed to inertial axes (wind-tunnel
system) in postprocessing.A timing pulley-belt system connected the
rig’s shaft to amagnetic rotary encoder (RenishawmodelRMB20SC,
Wotton-Under-Edge, Gloucestershire, England, United Kingdom).

This sensor provided measurements of the angle of attack. The rig’s
shaft was connected to the servo motor through an elastomer insert
coupling (R+W model EKH-60-B-24-28, Klingenberg, Germany).

C. Data Acquisition System

A custom data acquisition (DAQ) system, including custom-built
hardware, was used to collect pressure, strain, aerodynamic loads,
and aerodynamic variables data. Figure 3b shows a block diagram of
the DAQ system. The DAQ system was divided into seven micro-
controller unit (MCU)-based subsystems:
1) The section A subsystem acquired the signals from the pressure

sensors in the section A insert and the SG-A and SG-B strain gauge
arrays; it also received and stored data from the rig control electronics
and controlled the inboard servo motor.
2) The section B subsystem acquired the signals from the pressure

sensors in the section B insert and the SG-B and SG-C arrays, and it
controlled the outboard servo motor.
3) The rig control electronics subsystem acquired the angle-

of-attack rig encoder signal and was used as an alternative system
to control the motion of the rig’s servo.
4) The centralMCUsubsystem received time-stampeddata acquired

by section A, section B, and rig control electronics subsystems; and it
transmitted it to a PC via Universal Serial Bus (USB) communication.

a) b)

Fig. 2 Wing model experimental platform: a) distributed sensing array on wing, and b) model installed in wind tunnel.

a)

b)

Fig. 3 Pressure and strain sensing experimental platform: a) wind-tunnel layout, and b) DAQ system.
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This subsystem could also be used to transmit commands generated by
the PC to the other subsystems.
5) The load cell subsystem measured, acquired, conditioned, and

transmitted load signals to the PC via USB using a multifunction I/O
device (National Instruments model USB-6218, Austin, Texas).
6) The PC collected and stored pressure, strain, aerodynamic

loads, and aerodynamic variables data.
7) Lastly, the rig servo subsystem controlled the motion of

the servo. The servo motor motion commands could be generated
by the PC using proprietary software (Schneider Electric SoMove,
Rueil-Malmaison, France) or by the rig control electronics MCU,
which allowed for automatically generated inputs or tracking of an
external analog signal.
All acquired data were sampled at 200 Hz by the appropriate

subsystem and received by the PC. It was then routed using user
datagramprotocolmessages and stored on disk by a customgraphical
user interface written in Python. A simple network time protocol
(SNTP) was used to synchronize the clock signal of the MCU
subsystems with the PC clock signal. The SNTP implementation
achieved a maximum time offset of less than 1.0 ms between clock
signals. Results from a series of characterization experiments are
presented in the next section.

III. Signal Characterization Results

Using the wing model and testing rig described in Sec. II, a series of
characterization experiments were carried out in the University of Bris-
tol’s low-turbulence wind tunnel [24]. Quasi-static as well as dynamic
tests were performed at airspeeds of V��8;10;12;14;16;18;20�m∕s

to characterize the aerodynamic loads, pressure, and strain signals. These
tests consisted ofα sweeps at various pitch rates. The data collected from
these tests were used to identify stall characteristic markers in measured
pressure and strain signals, aswell as to acquire datasets for estimation of
airspeedV, angle of attack α, liftL, dragD, and pitchingmomentM, as
well as thecharacteristic responseof the signals tochanges inpitch rateq.
At the beginning of each experiment, α � 0 deg was held; then, α

was decreased until α � −15 deg was reached. Then, the direction
of the sweepwas changed and themotion continued untilα � 20 deg
was reached. The direction of the sweep was then changed until α �
−15 deg was reached, and this cycle was repeated four more times.
Lastly, at the end of the fifth cycle (α � 20 deg), the direction of
the sweep was changed once more until α � 0 deg was reached and
the experiment ended. During each α sweep, the corresponding qwas
held constant. Sweeps with q��0.1;0.5;5;10;20;30;40;50� deg∕s
were performed. No significant dynamic effects were observed bet-
ween datasets forq � �0.1; 0.5; 5� deg∕s; therefore, data correspond-
ing to q ≤ 5 deg ∕s were considered as quasi static in the following
analysis.
Figure 4 shows the characteristic response signals against α from

selected pressure and strain sensors in the distributed sensing array for
an experiment with V � 20 m∕s at various pitch rates, with all five
sweeps for each pitch rate overlaid. For ease of interpretation, the data
in these plots are presented in normalized form with the measured
signals computed as follows:

CPi
� Pi − P∞

�1∕2�ρV2
(1)

-4

-2

0

2

q =  5°/s
q =  30°/s
q =  50°/s

Section A

-15 -10 -5 0 5 10 15 20 -15 -10 -5 0 5 10 15 20

-4

-2

0

2

q =  5°/s
q =  30°/s
q =  50°/s

Section B

-15 -10 -5 0 5 10 15 20
-0.1

-0.05

0

0.05

0.1

0.15

q =  5°/s
q =  30°/s
q =  50°/s

SG-A

-15 -10 -5 0 5 10 15 20
-0.1

-0.05

0

0.05

0.1

0.15

q =  5°/s
q =  30°/s
q =  50°/s

SG-C

a) b)

c) d)

-15 -10 -5 0 5 10 15 20

-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

q =  5°/s
q =  30°/s
q =  50°/s

SG-B

-15 -10 -5 0 5 10 15 20

-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

q =  5°/s
q =  30°/s
q =  50°/s

SG-D

e) f)

Fig. 4 Distributed sensing array signal variation with α at various q with V � 20 m∕s: a) CPT01-A
, b) CPT01-B

, c) VBSG-A, d) VBSG-C, e) TSG-B, and
f) TSG-D.

ARAUJO-ESTRADA ANDWINDSOR 707

D
ow

nl
oa

de
d 

by
 2

4.
36

.2
24

.1
44

 o
n 

M
ar

ch
 1

0,
 2

02
2 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.C
03

62
24

 



VBj �
BMj

�1∕2�ρV2Sc
(2)

Tj �
TSj

�1∕2�ρV2Sb
(3)

where Pi is the pressure signal from sensor i, BMj is the bending

moment signal from sensor j, and TSj is the torsional strain signal

from sensor j with

i � LE-A;T01-A; : : : ;T07-A;B01-A; : : : ;B07-A;

LE-B;T01-B; : : : ;T07-B;B01-B; : : : ;B07-B

and j � SG-A; SG-B; SG-C, and SG-D (see Fig. 1 for sensor
locations).
Figures 4a and 4b show CPT01-A

and CPT01-B
variations with α (both

located at 0.1c). CPT01-A
behaves in a parabolic fashion for −15 deg

≤ α ≤ 15 deg, with approximate linear behavior for −5 deg ≤
α ≤ 10 deg. Note, however, that hysteretic behavior can be observed
in this region for q � 50 deg ∕s. For −15 deg ≤ α ≤ 15 deg,
CPT01-B

also behaves in a parabolic fashion but with a reduced linear

behavior. Hysteretic behavior can be observed in this region for

q � 50 deg ∕s. Evidence of flow detachment can be observed
for CPT01-B

at α > 12 deg. Both signals display hysteretic behavior

for the q � �30; 50� deg ∕s datasets: forCPT01−A
, this behavior is seen

in 15 deg ≤ α ≤ 20 deg; whereas for CPT01−B
, the region expands

to 12 deg ≤ α ≤ 20 deg.
Figures 4c and 4d show VBSG-A and VBSG-C variations with

α, respectively. Linear behavior is observed for VBSG-A in −12 deg
≤ α ≤ 10 deg; whereas for VBSG-C, the linear region expands

to −15 deg ≤ α ≤ 15 deg. Hysteretic behavior is observed for
VBSG-A for the q � �30; 50� deg ∕s datasets in 12 deg ≤
α ≤ 20 deg. Hysteretic behavior is also observed for VBSG-C for
the q � 50 deg ∕s dataset in 15 deg ≤ α ≤ 20 deg. Figures 4e and
4f showTSG-B andTSG-D variationswithα. Both signals display noisy
and highly nonlinear variation with α.
The results presented in this section show that there is a wealth

of information available in the pressure and strain signals. Flow
visualization pilot experiments suggest that the pressure signals could

be used to estimate the state of the flow around the wing, showing

whether the flow is attached, detaching, or detached. The signals also
capture the nonlinear behavior that occurs around stall and at high

pitch rates. And lastly, in combination with inertial data q, the signals

capture the hysteretic behavior of the system, offering the potential
to take advantage of dynamic lift and related effects. These character-
istics can be estimated using the information from the distributed
array. In the next section, an example application using the distributed
array data to estimate thevalues of aerodynamic variables and loads is
presented.

IV. Aerodynamic Variables and Loads Prediction

Using data from the quasi-static and dynamic experiments pre-
sented in Sec. III, the values of aerodynamic variables and loads were
estimated using two approaches: one based on an artificial neural
network (ANN) and another based on a partial least-squares (PLS)
regression estimator. These two methods were chosen to evaluate
the level of complexity required for estimation of the aerodynamic
variables and loads, with a simple linear estimator given by PLS and a
complex nonlinear estimator provided by an ANN. Here, ANN
estimators are nonlinear estimators where layers of interconnected
artificial neurons with nonlinear activation functions are optimized to
estimate desired output variables based on a set of training data
containing measured input data and the corresponding output. Pro-
vided the right structure and parameters are selected,ANNshave been
proven to be universal approximators [25]. On the other hand, PLS
estimation is a linear estimation method where a series of linear
combinations of the input predictor variables (components) are cal-
culated based on maximizing their covariance with the output
response variable [26]. The method can be thought of as a combina-
tion of multiple linear regression and principal component analysis.
To assess the significance of each dataset when estimating the

aerodynamic variables and loads, a three-level classification of estima-
tors was defined. This classification is based on the available data and
the conditions under which the experiments were performed. Figure 5
shows the classification used to define the estimators. The first classi-
fication level is defined by the type of training data used for the
estimation. There are two sets in this level: quasi-static and dynamic
training data. The second classification level is defined by the avail-
ability, or not, of inertial data as input; i.e., themeasured q is fed, or not,
into the estimator. Lastly, the estimators are divided into one of five
subsets, depending on the data from the distributed array used as input
for estimation: vertical strain (VS), vertical-torsional strain (VTS),
pressure (P), pressure-vertical strain (PVS), and pressure-vertical-
torsional strain (PVTS). Hence, “quasi-static IVS” denotes a dataset
using both quasi-static and inertial data as well as the vertical strain
signals from the distributed array, “dynamic IPVTS” denotes a dataset
usingdynamic and inertial data aswell as thepressure, vertical strain and
torsional strain signals from the distributed array, whereas “dynamic P”

Fig. 5 Aerodynamic variables and loads estimators classification.
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denotes a dataset usingdynamicdata aswell as thepressure signals from

the distributed array but no inertial data.
To assess the performance of each estimator class, the experimen-

tal data were divided into three sets: the validation, quasi-static

training, and dynamic training sets. The dataset separation is defined

next and shown in Fig. 6. The validation set consists of datasets for

q��10;20;40� deg∕s and V � �8;10;12;14;16;18;20� m∕s, as well
as datasets with V � �10; 14; 18� m∕s and q � �5; 30; 50� deg ∕s.
The quasi-static training set used data with V � �8; 12; 16; 20� m∕s
and q � 5 deg ∕s. Lastly, the dynamic training set used data with

V � �8; 12; 16; 20� m∕s and q � �5; 30; 50� deg ∕s.

A. Estimators Structure

The general structure of the ANN used for the estimation of

aerodynamic variables and loads is shown in Fig. 7a. All the trained

ANNs consisted of three layers: the input, hidden, and output layers.

The input layer handled the inputs to the ANN; it conditioned the

input signals to improve the likelihood of successfully training an

ANN by scaling them using the minimum value and range of the

expected inputs. The inputs were fed into the ANN in the following

units: pressure in pascals, vertical bendingmoment in newtonmeters,

and torsional moment in millivolts. The output from each of the

neurons in this layer was defined as

a�1�i � 2�xi −min�xi��
max�xi� −min�xi�

− 1 (4)

with xi representing the ith input signal to the ANN of a total of N�1�
signals. Note that the input layer is numbered as layer “1”.

The hidden layer consisted of interconnected artificial neurons
with the output of the jth neuron in layer l�l � 2; : : : ; L� defined by

a�l�j � g�l�

0
@XN�l−1�

k�1

w�l�
jk a

�l−1�
k � b�l�j

1
A

� g�l��z�l�j � (5)

withb�l�j as the bias term for the jth neuron �j � 1; : : : ; N�l��,a�l−1�k as

the output of the kth neuron in layer l − 1�k � 1; : : : ; N�l−1��,w�l�
jk as

the weight value for the jth neuron given to the output of the kth

neuron in layer l − 1, and g�l��z�l�j � as the activation function of the

jth neuron. All the neurons in the hidden layers used hyperbolic
tangent sigmoid functions as activation functions.
Lastly, the output layer took the signals produced by the hidden

layer and scaled them to match the magnitude of the target function.
The output from this layer is defined by

Ŷ � ka�L� (6)

with k as a scaling factor, and a�L� as the output from the hidden
layer L.
To find the best estimator for each estimator class, a direct search

was performed where a total of 32 ANNs with different numbers of
neurons and hidden layers were trained to estimate either α, V,D, L,
or M. A weighted sum of the mean-square error for training and
validation was used as selection criteria to find the ANN that best fit
the data. The ANNs were trained using MATLAB Version 9.2 and
Neural Network Toolbox Version 10.0, Release 2017a (MathWorks,
Inc., Natick, Massachusetts), employing the Levenberg–Marquardt
backpropagation algorithm as the training function. The character-
istics of the selected ANN-based estimators are given in Table 2.
While training the ANN-based estimators, a significant variance in

results forD andLwas foundwhen the quasi-static plus inertial dataset
was used for training. This variance appeared to be due to sensitivity to
the randomized initial ANN weights and biases. This effect was
explored by performing 10 independent training runs for each dataset.
All five estimation classes based on the sensing combination were
assessed, i.e., VS, VTS, P, PVS, and PVTS. For each training run, 32
different ANN structures were trained, each with a different number of
layers and neurons, keeping the best one for each class. This produced
10ANN-based estimators for each sensing combination. This analysis
confirmed that the variance in results was due to random initial con-
ditions and that it only affected the ANN-based D and L estimators
trained using the quasi-static plus inertial dataset. In the following
analysis, themedian root-mean-square-error (RMSE) estimation value
computed from the 10 independently trainedANN-based estimators is
used to perform a fair assessment between estimators.
The general structure of the PLS-based estimator used for

the estimation of aerodynamic variables and loads is shown in Fig. 7b.
The main benefits of PLS-based estimation are that it provides an

6 8 10 12 14 16 18 20 22
0

5
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20
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30
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45
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55

Quasi-Static Training  Dynamic Training Validation

Fig. 6 Datasets’ definition for aerodynamic variables and loads estima-

tion.

a) b)

Fig. 7 General structure of aerodynamic variables and loads estimators: a) ANN and b) PLS.
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estimator that is quick to obtain/train, is the most representative linear

mapping between input and output, is compact (low memory require-

ments), is computationally inexpensive (fast to compute), and is rela-

tively easy to implement.ThePLS-based estimator consists of a lookup

table block and a linear estimator block. The lookup tableblock takesV
and q as inputs and returns a vector of weights defined by the surface

Ω � f�V; kqk�. Any query point not contained in the table is either

interpolated or extrapolated, using a cubic spline method, depending

on whether the query point lies within the domain or not. In the linear

estimator block, the vector of weights is then used in combination with

the distributed array signalsX � VS∕VTS∕P∕PVS∕PVTS to produce
an estimate of the aerodynamicvariables and loads Ŷ. Note thatV is not

used for the computation of V̂, and thatX is fed into the linear estimator

in the following units: pressure in pascals, vertical bending moment in

newton meters, and torsional strain signal in millivolts.
The surface Ω in the lookup table block was built by carrying out

PLS regression using all of the points in the data training set defined

in Sec. IV. The PLS regression computes a predictor defined by

yi �
XN
j�1

xjbij � bi0 (7)

which is a linear combination of the input vector X with size N
(defined by input set, i.e., VS/VTS/P/PVS/PVTS) andweights vector

Bi � bi0; : : : ; biN , with yi as the target output vector (α, V, D, L, or

M) andwith each individual experimental condition represented by i,
from a total ofO conditions used for the PLS regression. Finally,Ω is
formed by collecting all of the Bi vectors. The PLS regression was
performed using the plsregress algorithm in MATLAB Version 9.2,
Release 2017a (MathWorks, Inc., Natick, Massachusetts). The num-
ber of components was changed, depending on the number of signals
from the distributed array used as input, as a compromise between the
available number of signals (four components for VS) and a repre-
sentative enough set of components (eight components for VTS, P,
PVS, and PVTS).

B. Estimators Comparison

The results of the ANN-based estimation of α and L are presented
next as representative cases. Figure 8 shows the α and L estimation
RMSE variation between estimator classes for the validation dataset.
In each plot, the RMSE data are first grouped by training dataset into
quasi-static (QS), quasi-static plus inertial (QS� inertial), dynamic
(DYN), and dynamic plus inertial (DYN� inertial). Then, the type
of data used as input for estimation is indicated along the x axis, with
the number of sensor signals increasing from left to right (from VS
to PVTS). Figure 8a shows the overall RMSE variation for α estima-
tion. The first feature that stands out is that strain-data-only-based
estimators (VS and VTS) perform very poorly within each of the four
subclasses when used to estimate α, with the overall validation RMSE
value greater than 2.0 deg; and, when poststall (α > 10 deg) perfor-
mance is considered (Fig. 8b), the RMSE doubles in value, with the
minimumRMSEgreater than 4.0 deg.A secondaspect to notice is that
the availability of q data does not seem to improve the performance of
anyof theα estimators significantly,withminimal improvement being
seen in any case. In general, when considering the quasi-static dataset
results, including inertial data slightly increases the α RMSE for
all sensor combinations (Fig. 8a); this is also the case for conditions
where α > 10 deg (Fig. 8b). In contrast, for the dynamic dataset
results, including inertial data decreases the α RMSE (Fig. 8a). For
conditions where α > 10 deg, RMSE variation between estimators
is significantly smaller and difficult to attribute to the availability
of inertial data alone. However, the addition of inertial data seems
to decrease the RMSE. Third, when α estimators trained with quasi-
static data are compared against the matching estimators trained
with dynamic data, there is a significant performance improvement

Table 2 Characteristics of ANN-based estimators

ANN characteristics

Variable Class No. of layersa No. of nodesa Structure

α, deg Dynamic IPVS 5 22 [7,6,5,3,1]

V, m/s Dynamic P 4 10 [3,3,3,1]

D, N Dynamic IPVTS 2 9 [8,1]

L, N Dynamic IPVTS 4 19 [7,6,5,1]

M, N ⋅m Dynamic PVTS 3 11 [7,3,1]

aExcludes input layer.

a) b)

c) d)

Fig. 8 Validation RMSE variation between ANN estimators: a) overall α̂ RMSE, b) α̂ RMSE for α > 10 deg, c) overall L̂ RMSE, and d) L̂ RMSE for
α > 10 deg. Estimator notation defined in Fig. 5. (Note logarithmic RMSE axis scale.)
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in validation performance. For instance, if VS- and VTS-based
estimators are not considered, the RMSE of the remaining estimators
in the dynamic class is smaller than 0.2 deg (Fig. 8a), with the poststall
RMSE value approximately increasing to 0.3 deg (Fig. 8b); in com-
parison, quasi-static trained estimators having overall and poststall
RMSE values of approximately 0.3 and 0.5 deg, respectively. Based
on the overall estimation RMSE as the selection metric, the PVS
estimator trained with dynamic and inertial data is the best estimator
for α (Fig. 8a).
Figure 8c shows the overall RMSE variation for L estimation.

The first feature that stands out is that the availability of inertial data
decreases the performance of almost every estimator trained using the
quasi-static dataset. This is thought to be caused by the estimator
class overfitting to the training data, which does not include the
full range of q values included in the validation dataset (see Fig. 6).
In contrast, availability of q significantly improves the performance
of the estimators trained with the dynamic dataset. Second, if estima-
tors trained with quasi-static plus inertial data are not considered,
progressive improvement within each L estimator class is observed
as more input signals are used. Note that the P-, PVS-, and PVTS-
based estimators significantly improve in performance as complexity
increases. Third, the VS- and VTS-based estimators do not perform
as poorly as the ones for α estimation but are still the worst perform-
ing within each estimator class. Fourth, the estimators in the dynamic
training data class perform better than those in the quasi-static train-
ing data class. For instance, the worst-performing estimators in the
dynamic class (maximum RMSE ≈1.18 N) achieved a similar per-
formance level as the best-performing estimators in the quasi-static
class (Fig. 8c). The performance trend holds for poststall conditions
(α > 10 deg), with the worst-performing dynamic estimator RMSE
≈1.66 N being similar to the average RMSE of the quasi-static
training data class (Fig. 8d). Overall, increasing the type of input
data decreases theLRMSE for all sensor combinations for the quasi-
static as well as the dynamic datasets (Fig. 8c). Based on the overall
estimation RMSE as the selection metric, the PVTS trained with
dynamic and inertial data is the best L estimator (Fig. 8c).
Based on the findings for the ANN-based estimators described

earlier in this paper, a comparison between ANN-based and PLS-
based estimators is presented next. All the estimators considered in
the comparison were trained using the dynamic plus inertial dataset
because this input set is the one that provided the best results. Figure 9
shows the overall validationRMSEvariation ofANN-based andPLS-
based estimators for α in Fig. 9a and L in Fig. 9b. When considering
the strain-data-only estimators (VS and VTS), PLS-based ones per-
form better than ANN-based ones. However, once any combination
containing pressure data is included, ANN performs better than PLS.
In general, the performance of ANN-based estimators improves with
an increase in the type of input data. In contrast, increasing the type
of input data does not improve the performance of the PLS-based
estimators. In fact, the performance seems to be bounded by the
performance of the best independent signal; for instance, for α esti-
mation, PVS and PVTS performances are equal to P. Overall, ANN
estimators outperform PLS estimators here. For ANN-based α, the
best RMSE is 0.159 deg (PVS), against 0.525 deg (PVS) for the PLS-
based estimator. For ANN-based L, the best RMSE is 0.432 N
(PVTS), against 0.642 N (PVS) for the PLS-based estimator.

The levels of error of the estimators presented here are comparable
to previously published work. For instance, for α estimation, experi-
ments using arrays of sensorsmountedonwings in prestall conditions
have achieved errors ranging from1.80 [27] to 0.26 deg [28]; whereas
for L estimation, RMSE values of 0.105 N [18] have been reported.
The RMSE performance variation for V, D, and M estimators was
similar to the reported performance of the α estimators. A detailed
comparison between the two types of estimators for both α and L is
presented in the following subsections.

C. Angle-of-Attack Estimation Comparison

Based on the estimation performance presented in Sec. IV.B,
the best ANN-based and PLS-based α estimators are selected for
comparison.Both estimators belong to thePVSclass andwere trained
using dynamic examples and inertial information. In the following
discussion, α and L represent actual measurements (i.e., signal read-

ings from an encoder and a load cell respectively), and α̂ and L̂
represent estimates of α and L. For the dynamic pitch case, the local
α is influenced by q. The change in local α due to q can be approxi-
mated by the following expression:

Δα � ql cosα
V � ql sinα

(8)

where l is the distance between the rotation point and a point on the
surface of thewing, andV is thewind speed. In Eq. (8), ql represents
the tangential speed due to the circular motion at speed q. It follows
that the terms ql cos α and ql sinα represent the vertical and hori-
zontal components of the tangential speed projected into the wind
axes frame. Then, for a given l, Eq. (8) has a maximumwhen α � 0,
q is at its maximum absolute value, and V is at its minimum. For the
experimental data presented here, and with l � 0.138 m (further-
most pressure tap location), q � 50 deg ∕s, and V � 8 m∕s, this
value is approximately 0.86 deg. Note that this value represents an
upper bound onΔα for the furthermost pressure tap location and that
the change in localα for the remaining locations is smaller. Due to this
small effect, the unmodified encoder measurement was used directly
when computing the baseline α for all the dynamic pitch cases.
Figure 10 shows α̂ against the nominal α (encoder measurement)

with V � 18 m∕s for both quasi-static and dynamic datasets.
Figure 10a shows a comparison between α and α̂ computed using
an ANN-based estimator, when quasi-static data are used as input.
The black plus sign (�)markers represent themeasuredα, and the red
dot (⋅) markers represent the PVS estimator output. The performance
of the PVS ANN-based estimator is satisfactory throughout the
α range, with the two point clouds lying one on top of the other.
The detailed plot in Fig. 10a shows that this trend holds even at high
α (10 deg ≤ α ≤ 20 deg). Figure 10b shows a comparison between
α and α̂ when dynamic data are used as input for the ANN-based
estimator. The performance of the PVS ANN-based estimator is
satisfactory throughout the α range, with no signs of hysteretic
behavior effects (even in the 14 deg ≤ α ≤ 20 deg region) over-
laying the α signal measured by the encoder. Figure 10b shows a
comparison between α and α̂ computed using a PLS-based estimator
when quasi-static data are used as input. The black plus sign (�)

VS VTS P PVS PVTS
0.1

1.0

10

PLS
ANN

Estimator

VS VTS P PVS PVTS
0.4

0.6

0.8

1.0

1.2

1.4

PLS
ANN

Estimator

a) b)

Fig. 9 Overall validation RMSE variation between estimators: a) α̂ RMSE and b) L̂ RMSE.
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markers represent the measured α, and the blue dot (⋅) markers
represent the PVS estimator output. The PVS PLS-based estimator

provides a good α estimate, but only for 5 deg ≤ α ≤ 15 deg.

Outside of this region, the estimation is not as good as the ANN-

based one, with an important mismatch with respect to the reference

measurement for α ≤ 5 deg. Additionally, at α ≥ 16 deg, the α̂
estimation error increases (detailed plot Fig. 10c). Figure 10d shows

a comparison between α and α̂ when dynamic data are used as input

for the PLS-based estimator. When compared with the quasi-static

data case, the performance is improved throughout the α range.

However, at high α (α ≥ 14 deg), the α̂ estimation error increases

(detailed plot Fig. 10d). An analysis on the characteristics of the

estimation error for the estimation of α and V is presented in

Sec. IV.E.

D. Lift Estimation Comparison

Based on the estimation performance presented in Sec. IV.B,

the best ANN-based and PLS-based L estimators are selected for

comparison. The ANN-based estimator belongs to the PVTS class

and the PLS-based one to the PVS class, with both estimators trained

using dynamic examples and inertial information. Figure 11 shows

L̂ against the nominalα (encodermeasurement)withV � 18 m∕s for
both quasi-static and dynamic datasets. Figure 11a shows a compari-

son between L (load cell measurement) and L̂ computed using an

ANN-based estimator, when quasi-static data are used as input, with

the black plus sign (�) markers representing the measured L and the

red dot (⋅)markers representing the estimator output. TheANN-based

PVTS estimator matchesLwell throughout the α range, with the two
point clouds lying one on top of the other. The detailed plot in Fig. 11a
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Fig. 11 Lift estimation comparison for V � 18 m∕s: a) ANN-based with q � �5 deg ∕s, b) ANN-based with q � �40 deg ∕s, c) PLS-based with
q � �5 deg ∕s, and d) PLS-based with q � �40 deg ∕s.
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Fig. 10 α̂ comparison for V � 18 m∕s: a) ANN-based with q � �5 deg ∕s, b) ANN-based with q � �40 deg ∕s, c) PLS-based with q � �5 deg ∕s,
and d) PLS-based with q � �40 deg ∕s.
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shows that the estimation performance remains satisfactory even in
the 10 deg ≤ α ≤ 20 deg region. Figure 11b shows a comparison

between L and L̂ when dynamic data are used as input for the ANN-
based estimator. The estimator is able to correctly reproduce the
hysteretic behavior throughout the α range, even for the 10 deg ≤
α ≤ 20 deg region. Figure 11c shows a comparison between L (load

cell measurement) and L̂ computed using an PLS-based estimator,
when quasi-static data are used as input. With the black plus sign (�)
markers representing the measured L and the blue dot (⋅) markers
representing the estimator output. The PLS-based PVS estimator
matches L well throughout the α range, with the two point clouds
lying one on top of the other, with the estimation performance
remaining satisfactory even in the 10 deg ≤ α ≤ 20 deg region, as
shown in the detailed plot in Fig. 11c. Figure 11d shows a comparison

between L and L̂ when dynamic data are used as input for the PLS-
based estimator. The hysteretic behavior is correctly reproduced by
the estimator throughout the α range. An analysis of the character-
istics of the estimation error for the estimation of D, L, and M is
presented in the following subsection.

E. Error Analysis

Using the best performing ANN-based and PLS-based estimators,
the RMSEwas computed for α̂, V̂, D̂, L̂, and M̂ for the validation set.
The computed RMSE values are given in Table 3, and the RMSE
relative to the measurement range (%MR) is shown in brackets.
Figure 12 shows the estimation error distribution for the aerody-

namic variables, α and V, for both the ANN-based and the PLS-based
estimators when the validation dataset is used as input. In the estima-
tion error vs α plot, for both Figs. 12a and 12b, the edge of the shaded
area represents the estimation error range, whereas the × and dot (⋅)
markers are the corresponding estimation error data points. Figure 12a
shows the eα̂ variation across α and its distribution. The ANN-based
estimator error range remains fairly constant acrossα; this is in contrast
with the high degree of variability for the PLS-based estimator error
boundary: particularly in both the α ≤ −10 deg and α ≥ 10 deg
regions. The ANN-based estimator error distribution is significantly
better than the PLS-based estimator error distribution, with RMSE �
0.15 deg for the ANN-based estimator and RMSE � 0.53 deg for
the PLS-based estimator (Table 3). Note that both error distributions
are appreciably different, with the meanvalue of the ANN distribution
centered at eα̂ � 0 deg, but this is not the case for the PLS error

distribution. For instance, the PLS error distribution seems to be
positive for α < 0 deg, indicating α underprediction for this region.
The overall mean PLS error value is slightly negative, indicating
overprediction across α.
Figure 12b shows the eV̂ boundary across α and the distribution of

eV̂ . The ANN-based eV̂ boundary remains fairly constant across α
and approximately half as wide as the one for the PLS-based estima-
tor for most of the α range. For α ≥ 10 deg, the PLS-based estimator
eV̂ boundary shows an increasing trend with α. The ANN-based

estimator error distribution is significantly better than the PLS-based
estimator one, with a RMSE of 0.15 m∕s against 0.39 m∕s. Both
error distributions are appreciably different, whereas the ANN dis-
tribution is approximately Gaussian; the PLS error distribution is
bimodal with a major peak centered at eV̂ ≈ 0.2m∕s and a minor one

centered at eV̂ ≈ −0.2 m∕s. This indicates that the PLS estimator is

highly likely to underestimate V by at least 0.2 m∕s.
Figure 13 shows the estimation error distribution for the aerody-

namic loads,D,L, andM for both theANN-based and the PLS-based
estimators when the validation dataset is used as input. In the estima-
tion error vs α plot for Figs. 13a–13c, the edge of the shaded area
represents the range of the estimation error, with the × and dot (⋅)
markers representing the corresponding estimation error data points.
The magnitude in each of the plots in Fig. 13 has been normalized
by dividing the corresponding quantity by the measurement range
(see Table 3). Figure 13a shows the eD̂ boundary across α and the

distribution of eD̂. Both the ANN-based and PLS-based estimators

error boundaries show an increasing trend with α, with the eD̂ boun-

dary for the ANN-based estimator slightly narrower than the one for
the PLS-based estimator. TheANN-based estimator error distribution
is very similar to the PLS-based estimator error distribution, with
RMSE values for the PLS-based estimator and ANN-based estimator
of 0.54 and 0.35 N, respectively. For reference, the measurement
range of D was 23.38 N (Table 3). The distribution of eD̂ across α
for both estimators appears to be very similar; however, the eD̂
distribution for the PLS estimator is bimodal with two peaks: one
aroundeD̂ ≈ 0.0%, and another ateD̂ ≈ 3.5%. Although the first peak

is significantly larger, the existence of the second peak indicates that a
number of D estimates will be overpredictions.
Figure 13b shows the eL̂ boundary across α and the distribution of

eL̂. The PLS-based estimator error boundary is wider than the one for

the ANN-based estimator across α. Both error boundaries become

Table 3 Error statistics of ANN-based and PLS-based estimators

RMSE (%MR), overall RMSE (%MR), α > 10 deg

Variable Measurement range PLS ANN PLS ANN

α, deg 35.00 0.525 (1.50) 0.147 (0.42) 0.786 (2.25) 0.243 (0.69)

V, m/s 12.00 0.386 (3.22) 0.148 (1.23) 0.607 (5.06) 0.200 (1.67)

D, N 23.38 0.544 (2.33) 0.351 (1.50) 0.810 (3.46) 0.663 (2.84)

L, N 82.39 0.642 (0.78) 0.438 (0.53) 0.999 (1.21) 0.633 (0.77)

M, N ⋅m 1.29 0.036 (2.80) 0.030 (2.33) 0.058 (4.50) 0.046 (3.57)

Fig. 12 Error distribution for estimation of aerodynamic variables using distributed sensing array: a) eα̂ and b) eV̂ .
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slightly wider in the stall region (α ≥ 10 deg). The ANN-based
estimator error distribution is better than the PLS-based estimator
error distribution, with a RMSE of 0.64 N for the PLS-based estima-
tor against 0.44 N for the ANN-based estimator. Measured L ranged
from −33.39 to 49 N (i.e., measurement range of 82.39 N; Table 3).
Note that the eL̂ distribution for the PLS estimator has three peaks: a

central one on eL̂ � 0% and two smaller ones (one at eL̂ ≈ 2% and

another at eL̂ ≈ −1.5%). This means that the PLS estimator tends to

produce more scatter L estimates.
Figure 13c shows the eM̂ boundary across α and the distribution of

eM̂. The ANN-based and PLS-based estimators error boundaries are

very similar across α. The width of both boundaries significantly
increases for α ≥ 10 deg. A decrease in performance is observed
at α ≈ 0 deg. This is thought to be related to some outlier points from
the torsional strain signal at α ≈ 0 deg (see Figs. 4e and 4f) because
both estimators belong to the dynamic PVTS class (see Table 2) and
make use of all available sensor signals. The error distribution for the
ANN-based estimator and the PLS-based estimator are practically the
same, with both RMSEs for the PLS-based estimator and the ANN-
based estimator equal to 0.04 and 0.03 N m, respectively. For refer-
encemeasuredM ranged from−0.69 to0.60 N ⋅m (i.e.,measurement
range of 1.29 N ⋅m; Table 3). The eM̂ PDF for the PLS estimator is

not symmetric, with a slight tendency toward eM̂ > 0%. This means

that PLS-based estimations ofM tend to be underpredictions.

V. Discussion

In this paper, the signal characteristics of a distributed array of
sensors measuring the loads (strain) and flow distribution (pressure)
acting over the surface of an instrumented wind-tunnel wing model
were measured. These signals were then used to build various non-
linear (ANN-based) and linear (PLS-based) predictors to estimate the
aerodynamic variables and loads: α, V, D, L, and M.
Wind-tunnel characterization tests of pressure and strain signals

showed that therewas awealth of information available in the pressure
and strain signals. This included information on the attachment state
of the flow and capturing nonlinear behaviors such as hysteresis and
pitch rate dependent effects. These signals also showed strong corre-
lation with parameters that cannot easily be measured in free flight,
such as lift and drag forces. Here, it is shown that all these character-
istics can then be estimated using the signals from the distributed
array. These estimates of aerodynamic variables and loads could be
used as inputs for flight control, supplying richer data than provided
by conventional sensor suites.
In the characterization results, it was observed that q significantly

changes the shape and magnitude of both the pressure and strain

signals (Fig. 4). Based on this behavior and the available data, ANN-
based estimators were organized using a three-level classification.
It was observed that depending on the class, the performance of the
ANN-based estimators improved in the following descending order
of importance: 1) for training data, estimators with dynamic training
data outperformed the matching estimators trained with quasi-static
data; 2) for availability of inertial data q, the availability of inertial
information improved performance; and 3) for distributed sensing
data combination, in general, progressive improvementwas observed
as the amount of input data increased (PVTS/PVS is better than P,
which in turn is better than VS/VTS).
It was observed that all ANN-based estimators only using combi-

nations of vertical strain and vertical-torsional strain stood out as the
worst performing in each estimator class. This is likely to be related
in part to airspeed/dynamic pressure information not being explicitly
fed into any of these estimators, making them particularly unsuitable
for measuring aerodynamic variables. However, from characteriza-
tion experiments, it was observed that the normalized vertical strain
signals are highly correlated to the normal force (Fig. 4), behaving in a
linear fashion for small α, which suggests that vertical strain could
be used to estimate normal force rather than aerodynamic variables.
Another reason for the reduced performance might be the highly
nonlinear behavior of the torsional strain signal with α as well as the
signal’s poor signal-to-noise ratio.
The performance of the ANN-based estimators for the aerody-

namic variablesα andV was significantly better than that for the PLS-
based estimators, suggesting that when using a distributed sensing
array, a nonlinear estimator (ANN-based) might be better suited to
estimate these aerodynamic variables. This is likely to be due to the
aerodynamic variables beingmore highly correlatedwith the pressure
sensor data than the strain data (Fig. 8) and the nonlinear nature of the
ANN being more suited for the nonlinearity of the pressure signals
(Fig. 4), especially at higher α.
The best-performingANNswere able to accurately predictα andV

even in the stall region, with overall validation RMSEs of 0.15 deg
and 0.15 m∕s (0.24 deg and 0.20 m∕s for α > 10 deg), respectively.
Similar levels of accuracy have been obtained in wind-tunnel experi-
ments with arrays of sensors mounted on wings in prestall conditions
[17,18,27–30]. It was observed that the α estimator is able to deal
with unsteady, nonlinear phenomena, removing hysteretic effects to
provide an accurate estimate in high α at high dynamic rates. This
suggests that ANN-based aerodynamic variable estimators that use
pressure and strain data as inputmay be used to provide reliable α and
V estimates at high α under dynamic conditions.
The level of estimation performance for loads was very similar for

ANN-based and PLS-based estimators, suggesting that when using a

Fig. 13 Error distribution for estimation of aerodynamic loads using distributed sensing array: a) eD̂, b) eL̂, and c) eM̂.
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distributed sensing array, a linear estimator might be sufficient to
estimate D, L, and M. Considering estimation of D, L, and M, the
best-performing ANNs were able to achieve overall validation
RMSEs of 0.35 N, 0.44 N, and 0.030 N ⋅m, respectively; and the
PLS achieved 0.54N, 0.64N and 0.036Nm.Both types of estimators
also provided good estimates in the stall region. These values are of
the same order of magnitude as other research using distributed
sensing in wind-tunnel experiments [18]. It was observed that both
theL estimators were able to accurately reconstruct hysteretic behav-
ior. This suggests that load estimators that use pressure and strain data
as input may be used to exploit dynamic behavior like dynamic lift to
improve the maneuverability of UAVs.
Overall, the results presented here indicate that a linear estimator

(PLS) is sufficient to estimate aerodynamic loads,whereas a nonlinear
estimator (ANN) might be more appropriate to estimate aerodynamic
variables. Additionally, these results suggest that pressure and strain
sensing could be used in combination with nonlinear estimators to
improve flight control performance byproviding accurate estimates of
aerodynamic variables and loads. The aerodynamicvariables could be
fed into model-based controllers, or the aerodynamic loads could be
used directly by physics-based controllers [19,31,32]. Alternatively, a
more robust estimate of the aircraft’s dynamic state can be obtained by
fusing the signals from thedistributed arraywith the inertial and visual
information of conventional sensors. It has been hypothesized that a
similar approach known as “mode sensing” may be used by insects
[8]. Another alternative is to use an end-to-end learning approach
where systems, typically using convolutional neural networks, are
trained to learn direct mappings between control inputs and system
outputs [33], resulting in smaller networks with improved perfor-
mance due to the internal component self-optimization.
To develop this approach further, there are a number of areas of

potential development. A factor that has not been considered so far in
the estimation algorithm is the signal response to control surface
deflections. For the system to provide accurate estimates, a model
of the signal response to control inputs needs to be included. Oneway
of achieving this would be for an estimator to take into account the
correlation between control inputs and the expected sensory response,
and to then filter out the expected sensor response. This estimator
would only then provide the signal generatedby any external changes.
It has been suggested that a similar adaptive filter approach is part
of the function of the cerebellum in the mammalian nervous system
[34], with other animal groups having equivalent systems involved
with theirmotor control. A potential extension to the results presented
could be to consider the case of highly flexible wings. Under
this scenario, it is likely that a greater number of sensors distributed
across the wing would be necessary to capture the full complexity of
thewing dynamics. The position and number of sensors could then be
optimized to maximize the observability of the parameters of interest.
Future work could also focus on finding estimators that provide
similar performance to ANNs but allow for physical interpretation
of its structure and corresponding parameters. In particular, estimators
using functional relationships between the measured signals and the
quantities being estimated (e.g., Kalman filter, extended Kalman
filter) should be considered.

VI. Conclusions

Wind-tunnel testing showed that a range of aerodynamic and load
states can be estimated using the signals from a distributed array of
pressure and strain sensors on a wing. The use of the distributed array
allowed accurate estimates to be made even when the flow became
unsteadyand captured nonlinear behaviors such as stall, hysteresis, and
pitch rate dependent effects. It was found that nonlinear ANN estima-
torswere robust and gave good estimates of aerodynamic variables and
loads, whereas linear PLS estimators performed well when estimating
loads but were less accurate at estimating aerodynamic variables.
Overall, these results indicate that bioinspired sensors, sensory

processing, and potentially neural inspired control structures offer
an alternative way to thinking about aircraft flight control. Future
applications based on distributed sensing could include enhanced
flight control systems that directly usemeasurements of aerodynamic

states and loads, allowing for increase maneuverability and improved
control. This could be particularly useful for unmannedaerial vehicles
with high degrees of freedom such as highly flexible or morphing
wings, where the airflow and loads vary dynamically across thewing,
depending on the configuration of the wing as well as the current
aerodynamic conditions.
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